文库搜索
切换导航
首页
频道
联系我们
国家标准目录
国际ISO标准目录
行业标准目录
地方标准目录
首页
联系我们
国家标准目录
国际ISO标准目录
行业标准目录
地方标准目录
批量下载
(19)国家知识产权局 (12)发明 专利申请 (10)申请公布号 (43)申请公布日 (21)申请 号 202211263756.6 (22)申请日 2022.10.17 (71)申请人 山东建筑大学 地址 250000 山东省济南市历城区临港开 发区凤鸣路10 00号 (72)发明人 宁阳 聂秀山 李成龙 郭杰 刘培德 张云峰 张彩明 (74)专利代理 机构 济南圣达知识产权代理有限 公司 372 21 专利代理师 李圣梅 (51)Int.Cl. G06V 10/764(2022.01) G06V 10/774(2022.01) G06V 10/82(2022.01) G06V 10/40(2022.01)G06N 3/04(2006.01) G06N 3/08(2006.01) (54)发明名称 一种面向单幅图像特征分组的因果不变性 学习方法及系统 (57)摘要 本发明公开了一种面向单幅图像特征分组 的因果不变性学习方法及系统, 属于鲁棒图像分 类系统技术领域。 本发明通过对 单幅图像的跨尺 度特征进行分组来构造具有明确划分标准的环 境分组, 在高质量标注数据不足且 无法确定多环 境划分标准的复杂开放场景下学习数据稳健的 因果不变性, 以实现鲁棒的图像识别和分类。 解 决了现有技术中存在 “进行图像分类依赖于高质 量标记数据, 无法应对复杂开放场景, 识别、 分类 准确率低 ”的问题。 权利要求书2页 说明书8页 附图2页 CN 115359304 A 2022.11.18 CN 115359304 A 1.一种面向单 幅图像特征分组 的因果不变性学习方法, 其特征是, 包括: 构建鲁棒分类 模型, 具体为: 获取分类数据集并进行 数据预处 理; 针对数据预处理后的分类数据集, 基于卷积神经网络, 构造跨尺度空间注意力机制和 跨尺度通过注意力机制对单幅图像进行跨尺度增强特 征提取, 构造特 征分组; 以及, 针对特征分组, 计算经验风险最小化损失、 不变风险最小化损失和对比损失, 使用复合 损失函数对网络进行训练获得网络模型; 针对待分类图像, 利用鲁棒分类模型输出分类结果。 2.如权利要求1所述的一种面向单 幅图像特征分组 的因果不变性学习方法, 其特征是, 对分类数据集进行 数据预处 理包括: 对分类数据集中的图像进行随机数据增强操作; 对随机数据增强后的图像进行归一 化操作。 3.如权利要求1所述的一种面向单 幅图像特征分组 的因果不变性学习方法, 其特征是, 基于卷积神经网络, 构 造跨尺度空间注意力机制和跨尺度通过注意力机制对单幅图像进 行 跨尺度增强特 征提取包括: 根据预处理后数据集的属性和待处理单幅图像的尺寸, 确定特征提取深度, 根据特征 提取深度, 基于卷积神经网络, 提取 单幅图像的多尺度特 征; 基于多尺度特 征, 分组获取跨尺度特 征组合; 构造跨尺度空间注意力 机制, 将跨尺度特征组合中的特征表示分别作为跨尺度输入和 主输入, 获取基于空间维度的跨尺度增强特 征; 构造跨尺度通道注意力 机制, 将跨尺度特征组合中的特征表示分别作为主输入和跨尺 度输入, 获取基于通道维度的跨尺度增强特 征。 4.如权利要求1所述的一种面向单 幅图像特征分组 的因果不变性学习方法, 其特征是, 在提取跨尺度增强特 征之后, 构造特 征分组之前还 包括: 对提取的跨尺度增强特 征进行重采样 操作。 5.如权利要求1所述的一种面向单 幅图像特征分组 的因果不变性学习方法, 其特征是, 根据特征提取深度, 确定基准分辨 率; 根据基准分辨率, 对低于基准分辨率的跨尺度增强特征进行上采样操作, 对高于基准 分辨率的跨尺度增强特 征进行下采样操作。 6.如权利要求1所述的一种面向单 幅图像特征分组 的因果不变性学习方法, 其特征是, 对跨尺度特征进行循环处理, 构造两个特征分组, 对特征分组进行对比损失最大化以使它 们具有不同的语义。 7.如权利要求1所述的一种面向单 幅图像特征分组 的因果不变性学习方法, 其特征是, 最小化经验风险最小损失以诱导网络模型学习数据的相关性, 最小化不变风险最小化损失 以诱导模型学习数据的因果不变性, 加权最大化对比损失以迫使 特征分组在相似的基础上 具有不同的语义。 8.如权利要求1所述的一种面向单 幅图像特征分组 的因果不变性学习方法, 其特征是, 经验风险最小化损失定义 为:权 利 要 求 书 1/2 页 2 CN 115359304 A 2其中, 为在环境 下的经验风险, 为训练集中的环 境划分, 为特征表示器; 不变风险最小化损失定义 为: 其中, 为最优分类 器, 为在环境 下的经验风险; 对比损失被定义 为: 其中, 表示对比样本, 表示正样本, 表示负样本, 表示负样本数量。 9.如权利要求1所述的一种面向单 幅图像特征分组 的因果不变性学习方法, 其特征是, 构建鲁棒分类模型还 包括: 将待预测的图像数据输入已训练好的网络模型进行 预测得到分类结果。 10.一种面向单幅图像特 征分组的因果 不变性学习 系统, 其特 征是, 包括: 鲁棒分类模型构建模块, 被 配置为: 获取分类数据集并进行 数据预处 理; 针对数据预处理后的分类数据集, 基于卷积神经网络, 构造跨尺度空间注意力机制和 跨尺度通过注意力机制对单幅图像进行跨尺度增强特 征提取, 构造特 征分组; 以及, 针对特征分组, 计算经验风险最小化损失、 不变风险最小化损失和对比损失, 使用复合 损失函数对网络进行训练获得网络模型; 分类模块, 被 配置为: 针对待分类图像, 利用鲁棒分类模型输出分类结果。权 利 要 求 书 2/2 页 3 CN 115359304 A 3
专利 一种面向单幅图像特征分组的因果不变性学习方法及系统
文档预览
中文文档
13 页
50 下载
1000 浏览
0 评论
0 收藏
3.0分
赞助2元下载(无需注册)
温馨提示:本文档共13页,可预览 3 页,如浏览全部内容或当前文档出现乱码,可开通会员下载原始文档
下载文档到电脑,方便使用
赞助2元下载
本文档由 SC 于
2024-02-18 22:24:33
上传分享
举报
下载
原文档
(550.6 KB)
分享
友情链接
GB-T 22484-2016 城市公共汽电车客运服务规范.pdf
GB-T 39334.4-2020 机械产品制造过程数字化仿真 第4部分:数控加工过程仿真要求.pdf
DB5101-T 117—2021 医药化工企业安全管理规范 成都市.pdf
IBM 2022 年数据泄露成本报告.pdf
GB-T 36261-2018 建筑用节能玻璃光学及热工参数现场测量技术条件与计算方法.pdf
T-CCSAS 026—2023 化工企业操作规程管理规范.pdf
GB 35114-2017 公共安全视频监控联网信息安全技术要求.pdf
GB-T 35274-2023 信息安全技术 大数据服务安全能力要求.pdf
T-ZZB 2304—2021 辐射致 制 冷膜.pdf
T-CEC 5067—2022 火力发电工程安全检查规程.pdf
GB-T 33172-2016 资产管理 综述、原则和术语.pdf
GM-T 0044.4-2016 SM9标识密码算法 第4部分:密钥封装机制和公钥加密算法.pdf
GB-T 2572-2005 纤维增强塑料平均线膨胀系数试验方法.pdf
GB-T 3610-2010 电池锌饼.pdf
GB-T 37204-2018 全钒液流电池用电解液.pdf
GB-T 13298-2015 金属显微组织检验方法.pdf
GB-T 19115.2-2018 风光互补发电系统 第2部分:试验方法.pdf
NY-T 1240-2021 草原鼠荒地治理技术规范.pdf
GB-T 5599-2019 机车车辆动力学性能评定及试验鉴定规范.pdf
GB-T 40665.2-2021 中医四诊操作规范 第2部分:闻诊.pdf
1
/
13
评价文档
赞助2元 点击下载(550.6 KB)
回到顶部
×
微信扫码支付
2
元 自动下载
点击进入官方售后微信群
支付 完成后 如未跳转 点击这里下载
站内资源均来自网友分享或网络收集整理,若无意中侵犯到您的权利,敬请联系我们
微信(点击查看客服)
,我们将及时删除相关资源。